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3 “INNOVATIONS” TO THE CUTTING PROCESS 
  We may conclude that, unfortunately, the irrefutable above-discussed facts, most of them known 
since the 19th century, neither became a part of the metal cutting theory, nor influenced the thinking of 
subsequent further researchers.  These facts were just ‘conveniently’ forgotten.  When calculations based 
on the single shear model failed to match experimental results, a number of ‘excuses’ have been invented 
‘to explain’ this mismatch.  Imaginary high strain rates allegedly occurred in cutting along with imaginary 
high temperatures in the deformation zone were introduced just to save the concept.  As such, a huge 
arsenal of material-behavior-in-cutting inventions was proposed.  These calculative achievements last 
usually till a new experimental finding makes them inapplicable. Then new mathematical inventions are 
applied, instead of turning to look for the correct physical model of the metal cutting process. 

This situation is similar to what it was for 1400 years, when the Ptolemaic model was reigning in 
science. The model was based on our very natural perception that all celestial bodies are rotating around us, 
as it is seen with our very eyes. This perception led to the natural concept that we on Earth are the center of 
the universe. The concept of "us in the center of the world" corresponded to the philosophical, religious, 
and ideological beliefs of those times, so that the geocentric model got full official support.  To cope with 
this model, mathematical treatments were developed, in which planets had to rotate on hypocycles, the 
centers of which rotate on epicycles, the centers of which rotate on orbits around us. If the calculation 
results did not fit, one could always add as many rotary motions and cycles as needed for a fit.  The same 
tendency can be traced in metal cutting.  
 
 
4 PRINCIPLE OF MINIMUM ENERGY 

When it was finally realized that the shear angle and thus complete solution to the single shear 
plane model cannot be obtained theoretically using just the above-discussed geometrical considerations, an 
attempt was made to apply the principle of minimum energy to calculate the shear angle.  The following 
assumptions were made (although no one known to us reference even mentioned these assumptions): 

• A single unique shear (not sliding or deformation) plane exists all the time during cutting 
as shown in Fig. 1. 

• A unique shear velocity Vs, which is the relative velocity between the unreformed work 
material and the chip on the shear plane, exist along this plane, this velocity is constant, 
and remains the same all the time during cutting.  As a consequence, a velocity diagram 
shown in Fig. 1 should then be adopted.  Astakhov et. al, [40] showed that this velocity 
diagram is simply wrong because the velocity of deformation (the shear velocity) may be 
greater (for negative rake) than that of applied load that is physically impossible for 
multi-degree-of-freedom systems as the model of Fig. 15. 

• The chip has chip velocity Vc and thus moves up.  As such, to justify the continuity 
condition (Eq. (1)), the shear plane should follow the chip to prevent the separation on 
the shear plane.  At certain instant, however, the switch between the current and 
successive shear plane should take place.  This switch must occur instantly.   

• Because the velocity of deformation on the shear plane is constant, the shearing force Fs 
acting along this plane and this force should remain constant over the time of existence of 
this shear plane.  It is not clear what happens with this force during switch between the 
successive shear planes.  If the shearing velocity Vs is constant then an infinite 
acceleration of this velocity should occur during this switch. 

• Because the shear deformation on the shear plane is a result of material compression, the 
normal force Fn which is perpendicular to the shear plane should be considered.  The sum 
of the shear and normal forces is the force R which the tool exerts on the chip.  Force R 
may be resolved along the direction of motion of the tool relative to the workpiece into a 
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component Fc, the cutting force, which is responsible for the total work done in cutting, 
and into component Ft, the trust force, which is perpendicular to Fc. 
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Fig. 15. Single shear plane model according to Ernst and Merchant. 
 
 

According to Ernst and Merchant [33], the shearing force is calculated as 
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where Ac =t1 ⋅ bc is the uncut chip cross-sectional area (Fig. 15); τy is the shear strength of the work 
material.   

Accepting Eq. (23), Ernst and Merchant made one more indirect assumption, namely, the work 
material deforms when the stress on the shear plane reaches the shear strength of the work material.  In 
other words, no strain hardening of the work material is allowed and thus the work material is elastic- 
perfectly-plastic.  Although some metals may exhibit such behavior (for example, low carbon steels), the 
onset of plastic deformation, however, occurs at the stress which is significantly higher than the yield 
strength (the so-called upper yield point) so that the shearing force Fs cannot be constant even for these 
specific materials.  For the steels, used in the experiments Ernst and Merchant [33], strain-hardening takes 
place and thus the so-called flow shear stress is much higher than the yield strength of the work material.
 Besides, it was also assumed that the flow shear stress on the shear plane does not depend on the 
normal stress on this plane. 

It follows from Fig. 15, that 
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and using Eq. (23) one  can obtain 
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The work spent in cutting is calculated as 
VFU cc =      (26) 

where V is the cutting velocity (Fig. 15). 
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According to the principle of minimum work, the work done in cutting should be at minimum, and 
thus its derivative should be zero, i.e. 
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Because the cutting velocity V is not equal to zero, it follows from Eq. (5) that 
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Analyzing Eq. (25), Ernst and Merchant concluded that τyAccos (θ - γ) is constant.  Accepting this fact one 
should realize that another assumption is made, namely, that the angle of friction θ and thus the friction 
coefficient is constant at the tool/chip interface that was not proven to be the case by many studies (this will 
be discussed later in this chapter).   

Substituting Eq. (25) and accounting for the assumption that τyAccos (θ - γ) is non-zero constant 
one can obtain 

( ) ( )
( ) ( ) ( ) 0

cossin
1cos

cossin
cos

=





−+∂

∂−=





−+

−
∂
∂=

∂
∂

γθϕϕϕ
γθτ

γθϕϕ
γθτ

ϕϕ cy
cy

c A
A

F

(29) 
from which the above-discussed (Eq. (18) Ernst and Merchant solution is obtained 

2
2 πγθϕ =−+sp      (30) 

 Having conducted a number of experiments, Merchant realized that, unfortunately, this solution is 
in very poor agreement with experimental results.  Instead of re-thinking the severe above-discussed 
assumptions made in developing the single shear plane model, Merchant, however, tried to ‘adjust’ the 
behavior of the work material suggesting that the shear strength of the work material depends linearly on 
the normal stress on the shear plane (Eq. (22).  He thought that that this might account for the fact that his 
experimental results were not in agreement with Eq. (30).  Combining Eq. (22) and Eq. (25) it follows that 
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Applying the principle of minimum energy and following the same procedure as before, that is, minimizing 
Fc with respect to ϕ in order to obtain an expression for ϕ, it can be readily shown that  
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and this solution is known as the modified Merchant solution which was obtained earlier (Eq.(19)) on the 
basis of pure geometrical considerations.  As discussed above, there is still a marked disagreement between 
this solution and the experimental results.   
 The subsequent researchers had to deal with this problem.  Most of them refused to admit the 
discussed failure ignoring the known discrepancy.  For example, in the recent publication by Shamoto and 
Altintas [41] the Ernst and Merchant approach was applied to oblique cutting.  It was proudly mentioned by 
the authors that when three-dimensional oblique cutting model is applied to two dimensional orthogonal 
cutting, it yields the same shear angle expression as Eq. (30).   

Some researchers tried to understand the nature of the discussed discrepancy between the 
theoretical and the experimental results.  Because the single shear plane model (and thus all above 
mentioned assumptions) was a ‘holy cow’ and thus should not be questioned, the principle of minimum 
energy came under fire.  The signal was shown by Bishop and McDougall [36,42] who wrote that “the 
minimum force principle as used in the actual theories is at best a hypothesis and as actually employed is 
not valid.”   Full support to this point was given by Hill [42].  Their criticism, however, was of qualitative 
rather than quantitative nature: if the experimental results do not match the theoretical obtained using the 
principle of minimum energy, this principle is not valid at all.  Bishop and McDougall, and Hill did not pay 
much attention that Ernst and Merchant applying this principle to the one model got one result and then 
Merchant applied the same principle to the modified model and got a different result. 
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 The most ‘convincing’ result on inadmissibility of applying the principle of minimum energy was 
presented by Rubenstein [43].  Rubenstein proposed a method of testing the admissibility of this principle 
in metal cutting.  The essence of this method is to test the experimental results against the theoretical 
obtained by minimizing the following expression for the cutting force Fc 

)1(cot1
1 ++= ϕτ ccc btFF     (33) 

where Fc
1is the force component arising from the inevitable flow of a thin layer  of the work material below 

the tool (according to Rubenstein, this component is determined by the cutting edge radius, the tool 
clearance angle, and the degree of adhesion (probably a new parameter introduced by Rubenstein, auth.) 
between the tool and the workpiece); τ is the shear stress acting on the lower boundary of the primary 
deformation zone; ϕ is “the Merchant shear angle”. 

Analyzing Eq. (33) one may wonder what it has to do with the single shear plane model where the 
tool is considered to be perfectly sharp so that no ploughing can occur and thus the plowing component Fc

1 
(Rubenstein did not use this term, although it was considered in details almost twenty years earlier by 
Albrecht [44]) should not be considered; the rake and friction angles are not even included; the deformation 
zone instead of a single shear plane is considered.  No wonder Rubensteing obtained a very strange result 
differentiating Eq. (33) and thus declared that ‘of the minimum work hypothesis’ is inapplicable in metal 
cutting.  

To finish the discussion on the principle of minimum energy, it is worthwhile to point out the 
following.  This principle (not hypothesis) of minimum energy (not work, force, etc.) is one of the most 
fundamental principles of physics (like gravity, inertia, etc).  It is applicable to any physically realizable 
technical system so that it must be applicable in metal cutting where no paranormal activities were yet 
observed.  If there is a discrepancy between the theoretical and experimental results, the researches should 
blame the incorrect model used in studies.  Unfortunately, this is not the case in metal cutting where the 
single shear plane model is still untouchable. 

 
5 THEORY DUE TO LEE AND SHAFER 

Ernst and Merchant in their studies never considered the state of stress (and strain) in the work 
material ahead of the tool, in the chip, and at the tool/chip interface.  In other words, it was not their 
concern to understand how the force exerted by the tool rake face is transmitted to the shear plane.   

The first attempt to solve this problem was made by Lee and Shafer [35].  For their modeling, Lee 
and Shafer considered the following: 

• Method of machining: orthogonal cutting as the simplest case. 
• Work material: a rigid-perfectly plastic solid (no work hardening was allowed).   It was considered 

as a good approximation for steels and cast irons for three reasons [45-47].  First, work hardening 
of steels decreases rapidly with increasing strain and this in the large strains, which occur in metal 
cutting, the material yields at a fairly constant stress for most of the strains.  Second, since the 
effect of high strain rate is to raise the yield strength of a material with respect of its ultimate 
stress, then at high strain rates of the order of 105 s-1 which exists in the cutting operation, the 
stress-strain curve of the work material would tend to that of a non-work hardening material.  
Third, since the elastic yield-point strain of most materials is of the order 10-3, it can be safety 
neglected in analyzing large plastic deformations.  

• State of strain: plane strain conditions because it was observed that no sideways spread occurs 
(apart from an edge effect).   
We have to point out here that the assumptions made about the work material are very 

questionable.  Although the first reasoning about work hardening may be partially applicable to very mild 
steels, the second assumption about high strain rates in metal cutting has no ground because no one 
research was carried out to measure this rate experimentally [31] prior Lee and Shafer study.  Therefore, 
their main argument about work material behavior is the weakest one. 

Lee and Shafer were the first who tried to apply engineering plasticity (vigorously developing in 
the same years by Hill [48]) to solve the metal cutting problem.  In engineering plasticity, the solution of 
this type of problems involves the following distinctive stages: 

1. Determination of stress distribution, which must satisfy the boundary and equilibrium conditions 
as well as the accepted yield criterion. 

2. Obtaining the displacement (velocity) solution, which must satisfy the boundary and 
incompressibility conditions. 
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3. Verifying the consistency of the stress and displacement solutions bearing in mind that for a 
perfectly plastic material stress and plastic strain are not related by a material constant. 

The method of obtaining these solutions proposed by Hill [48] and used by Lee and Shafer includes a 
determination of the system of orthogonal curvilinear trajectories of the maximum shear stress, called slip 
lines, which defines the region of plastic deformation where the material is stressed to the yield.   
 Figure 16a shows an infinitesimal element at any point of the region of plastic deformation under 
plane strain conditions.  As seen, each face of this element is subjected to a normal stress σx or σy and a 
shear stress τxy or τyx.  This is true for all orientations of the considered element except one shown in Fig. 
16b, where there are no shear stresses.  The normal stresses are then called principal stresses,  σ1 and σ2 and 
their directions are principal directions.  At 45o to this orientation (Fig. 16c) the shear stresses k are at their 
maximum and the normal stresses, p are equal.  Although, the maximum shear stress k is constant for a 
non-workhardening material depending only on its yield strength, the direction of k varies from point to 
point.  If the directions of maximum k were traced out for the entire region of plastic deformation, they 
would form a net (or field) of orthogonal curved trajectories.  These are the slip lines. 
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Fig. 16. Equivalent stress system on a small element in the plane of deformation under 
conditions of plane strain: (a) stresses on an element with general orientation; (b) 
principal stresses; (c) maximum shear stresses. 

 
 

The normal stress p is also varies from point to point in the region of plastic deformation.  When 
the slip-line field has been determined, the value of p can be determined using the Hencky equations  

=+ Ikp ξ2  constant along the I slip line    (34) 

=+ IIkp ξ2 constant along the II slip line    (35) 
where  ξI and ξII are the angles between the tangent to the slip lines I and II at a point of interest and a fixed 
direction (for example, the x-axis [9]). 
 Similar considerations apply to the state of strain at a point of interest.  Incompressibility of the 
work material and plane strain condition yield 

0=+ III εε       (36) 
Because there is no change in length along the slip lines, Lee and Shafer concluded that the work 

material is subjected to pure strain in the plastic zone.  We have to point out here that this is true if and only 
if there is no velocity discontinuity is allowed in the deformation zone.  Unfortunately, Lee and Shafer as 
well as the subsequent studies did not pay attention to this fact assuming that pure shear strain deformation 
takes place also in the single shear plane model and in the model with parallel boundaries where velocity 
discontinuity cannot be ignored [9]. 

The slip line field gives the instantaneous state of yielding and so it is suitable for the solution of 
such problems as, for example, indentation.  In metal cutting, however, as deformation proceeds, the slip-
line field changes and so a solution of such a problem has to be carried out in a step-by-step manner of the 
changes if the shape of the workpiece and the chip are to be allowed.  Because there were no computers 
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readily available for such cumbersome procedure at the time of the Lee and Shafer study, the problem of 
orthogonal cutting was treated as ‘steady state’ problem where the shape of deforming region remains 
constant because it is predetermined by the shape of the tool and hence the slip-line field remains 
unchanged.  Since then, orthogonal metal cutting is treated as one of the deforming processes (extrusion, 
rolling, drawing) ignoring obvious facts: 

• In any deforming process, the workpiece changes its shape due to plastic deformation preserving 
its volume.  In metal cutting, the chip physically separates from the rest of the workpiece so that 
the workpiece changes its volume.  There are two separate items after machining, namely, the 
machined workpiece and the chip.   

• The chip has always segmented structure [9].  The steady-state solution does not allow the switch 
between the fragments. 

Attempting to apply the discussed basics of slip-line method, Lee and Shafer developed their 
model of chip formation shown in Fig. 17 where the workpiece is stationary and the tool moves from right 
to left.  Because a steady-state problem was kept in mind, the model was considered when the tool 
advances far enough that the stress in the deformation zone reaches the yield point.  The shear plane AC 
separates the undeformed work material from the chip.  Its orientation was chosen to give the minimum 
machining force.  As a result, when an infinitesimal element of work material crosses the shear plane AC, it 
rapidly sheared into the chip.  In this process it acquires that the velocity, which makes it move up the tool 
and the stress falls to zero.  This rapid onset of deformation and velocity occurs at the edge AC of the slip-
line field ABC which was deduced by Lee and Shafer to be as shown in Fig. 17.  For such a model, the 
constructed slip-line field is fictitious because no plastic deformation is allowed above the shear plane AC .  
In our opinion, a slip-line field makes sense if and only if it is used to describe strain development in a 
deformation zone.  The model considered by Lee and Shafer (Fig. 17) where no plastic deformation was 
allowed in the slip-line field has no physical difference from that by Ernst and Merchant [33].   
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Fig. 17. Lee and Shafer’s slip-line field solution for no built-up edge. 
 
 
Because the state of stress in ABC is uniform, a Mohr’s circle diagram was used for its 

representation as shown in Fig. 18.  Since the maximum stress that can be withstood is k = τy, the radius of 
the circle is k.  Further, since there is no force across AB then the Mohr circle passes through the origin.  
There are two possible circles satisfying these conditions, one in which all normal stress components are 
tensile and the other in which all are compressive.  The latter is obviously the appropriate one.  The normal 
stress on the slip lines is determined by the abscissa of the center of the circle to be equal p = k. The shear 
stress thus is ±k.   

Considering the equilibrium of triangle DCB, Lee and Shafer concluded that the slip lines (as the 
lines of maximum shear) meet the tool face at angles DCB = η where η = 45o - θ, and so the lower 
boundary AC of the slip-line field meets the tool face at an angle (90o - η).  Further, after passing the slip-
line field the chip is subjected to no forces and so no stresses is transmitted across the upper boundary AB.  
Therefore, the slip lines must meet AB at 45o.  Using this consideration, a location of point e on the Mohr 
circle was determined by the angle η (Fig. 18).  Having determined this location, Lee and Shafer used the 
similarity of the Mohr circle to determine the friction angle θ at the tool/chip interface as shown in Fig. 18.  
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Therefore, the friction coefficient µ = tan θ was defined as the ratio of the shear and normal stresses at the 
tool/chip interface.  In our opinion, this is a very important deduction, which unfortunately did not attract 
any attention of the subsequent researches who unanalyzed the Lee and Shafer model. 
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c,f
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Fig. 18. Mohr’s circle diagram for Lee and Shafer’s solution with no built-up edge. 
 
The so constructed slip-line fields consisting of an orthogonal set of straight lines (Fig. 17) 

satisfies the above-discussed conditions.  If now the Hencky equations (Eqs. (34) and (35) are applied, it 
may be seen that the stress distribution in ABC is uniform.  These results end the first distinctive stage of 
the solution. 

As mentioned above, the second stage must be a corresponding displacement (velocity) solution 
consistent with this slip-line field.  By considering the relative motion of the tool and work material, it can 
be shown that the velocity components of an infinitesimal element of work material crossing the slip lines 
are constants.  As a result, it was concluded that the whole slip-line field ABC moves as a rigid body.  
Across AC there is a discontinuity in the tangential component of velocity that results in infinite shear strain 
rate and, therefore, as in Ernst and Merchant solution, shear takes place only on one plane, namely the 
shear plane AC.  A logical question rises then about the contracted slip-line field where no deformation is 
allowed. 

From the pure geometrical considerations, the Lee and Shafer solution gives the following 
expression for the shear angle 

45=−+ γθϕ      (37) 
The horizontal (power) component of the cutting force was obtained by considering the 

equilibrium of region ABC (Fig. 17).  Because the surface AB is the stress free, the force on the tool is equal 
to the force on surface AC.  Further, as accepted in the model, the shearing and normal stresses on AC are 
both equal to k.  It can therefore be shown that 
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We have to point out here that bc being the width of cut is somehow omitted in the equation for the 
horizontal component presented by Lee and Shafer in [35].  Pugh [36] analyzing the Lee and Shafer model 
just repeated this equation without any comments. 

The chip thickness ratio (this term was used by Lee and Shafer [35]) can then be calculated as  
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It is interesting to note that Eq. (39) represents the chip compression ratio as reciprocal to the chip thickness 
ratio used by Merchant [34].  Unfortunately, this difference was not pointed out in the subsequent studies 
where the Lee and Shafer model was considered in details [36]. 
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 It may be seen from consideration of Eqs. (38) and (39) that if γ is negative, say –10o, and with, 
say θ = 35o,  cot(π/4 - θ + γ) becomes infinite so do Fc and t2.  To resolve this problem, Lee and Shafer tried 
to work out a slip-line field based on the idea of the built-up tool nose. 
 The Lee and Shafer model with the built-up tool nose is shown in Fig. 19 and consists of a small 
centered fan-like slip-line field to give a built-up nose in conjunction with the uniform stress field of the 
previously considered solution.  Constricting this model, however, Lee and Shafer made so many 
unjustifiable assumptions that one might have a hard time understanding their considerations.  Among these 
assumptions are: 

• The model is developed for high friction and small or negative rake angle.  The angle φ of the fan-
like slip line field is derived as 

γθψπφ −+−=
4

     (40) 

 where ψ is angle CFE on Fig. 19 (which cannot be determined because the side FC is curved).   
Now, if we substitute γ = -π/8, assume (using the Lee and Shafer data provided in Fig. 5 or 6 in 
[35]) µ = 1.73, then θ = π/3.  Then from Eq. (40) it follows that 

o9.126705.0 ==+ πψφ     (41) 
In the model development, angle φ should be small and thus the proposed configuration of the 
built-up edge cannot physically exist. 
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Fig. 19.  Lee and Shafer’s slip-line field configuration with the built-up edge. 
 
 

• The rigid region CFE takes a form of a built-up nose on the face of the tool and it is considered to 
be in the limiting state of stress near apex F.  However, if the work material is perfectly plastic, 
how can edge F cut the same material, which, according to Lee and Shafer is under the same 
stressed state.  It should be clear that tool material must be harder that the work material.  
Moreover, in the consideration of the force on this built-up nose, it is stated that it must be  
‘stresses only elastically’ that physically is not realizable.  

• The normal stress on slip line AF is assumed to be equal to k/(1+2θ) without any explanations.  
Lee and Shafer just mentioned that they took this equation from Hill’s work [49].  As it is known 
now [50-52], this is valid only for a certain geometry of die and billet in extrusion or in upsetting 
and thus cannot be considered as the general case. 

• To construct the Mohr circle corresponding to the modified model, the angle of friction along FE 
should be know (up-to-date there is no reliable method to measure this angle).  Moreover, this 
angle is forgotten in the equation for the friction force on FE (Eq. (11) in [35]) where the friction 
angle peculiar to the tool/chip interface is used. 

• The angle of friction at the chip/built-up interface (surface FC) is assumed to be the same as at the 
tool chip interface. 

As a result of these assumptions, the modified model was found to be even less practical than the first one 
[36]. 
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6 UNIQUENESS OF MACHINING  
An important step in the development of engineering plasticity was a book by Hill [48] where he 

formulated the known Hill’s limit theorems.  According to Hill, since the stress distribution in both the 
single shear plane model and the Lee and Shafer model [35] are only given for a part of the body, then the 
corresponding solutions (the so-called type 1 and type 2) give an upper limit to the yield point loads, i.e., 
they are only upper-bound solutions.  It also follows from these limit theorems that, of two upper-bound 
solutions, the one, which gives the greater yield point load, should be rejected as a possible solution.  
Bishop and McDougall [36,42] managed to prove that in cutting, however, when θ ≤ γ, both the type 1 and 
type 2 solutions are valid upper-bound solutions.  Moreover, they are solutions of different problems.  On 
the basis of their analysis, Bishop and McDougall concluded that in the cutting process the deformation 
mode is not determined directly from the problem and that it may well depend upon the conditions existing 
from the commencement of cutting.  In simple language it means that  no unique solution to the cutting 
problem exists. 

Following on this work, Hill [42] suggested that the search for a unique steady-state solution from 
the machining problem was probably fruitless and that there may be many complete steady-state solutions 
of a given type such as the single shear plane type. 

Since there is so little constraint on the flow of the material in machining process, it seems highly 
probable that the ultimate steady flow be influenced by the initial conditions.  In this event, the problem 
reduces to that of determining a range of steady-state solutions each linked by an intervening non-steady 
flow with given initial conditions.  Hill has made a start on this new approach by establishing for the 
complete shear plane type of solution the extent of the permissible range of shear plane angles. 

In order to determine the excluded ranges in which the shear plane angles are not admissible, Hill 
considered the single shear plane model shown in Fig. 20 where a wedge-shaped tool is moved in the  
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Fig. 20. Hill’s model. 
 
direction normal to its cutting edge and parallel to the plane surface of the workpiece.  The depth of cut is 
assumed small compared to its width.  Using this model, Hill investigated the possibility of steady states in 
which the zone of deformation is concentrated in a single plane (ST) springing from the tip of the tool (T).  
The inclination of this shear plane to the surface of the workpiece is denoted as ϕ and its inclination to the 
tool face by ψ.  Adopting this model, Hill made the following indirect assumptions that might have greatly 
affected the results of his study:  

• A unique shear plane having “steady-state” inclination angle ϕ exists all the time during 
the cutting process.  No switch between successive shear planes is allowed. 

• An idealized rigid-perfectly plastic work material is the case. 
• All the deformation of the work material takes place along the shear plane.  When one 

considers the single shear plane geometrically (note that there is no physics or mechanics 
of materials involved in earlier considerations), as everybody did before Hill, such an 
approximation does not fight back.  In mathematics, however, it leads to the so-called 
stress and deformation singularities.   
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Moreover, Hill assumed additionally that the side SO of the chip free surface is parallel to the rake face TR 
and simple Coulomb friction having invariable friction angle θ takes place along the tool/chip interface.  In 
our opinion, the last two assumptions just put the final nail to the coffin of the whole study, which is full of 
unreasonable assumptions.  The reason for this it is quite simple:  Hill was not a specialist in metal cutting 
or in the physics of materials.  Engineering plasticity greatly developed by Hill is a branch of mathematics, 
which considers a real material as “perfect solid” having no structure, anisotropy, etc. 
 What is great about Hill’s study is that, because Hill tried to use properly the method of 
engineering plasticity, he recognized for the first time that the velocity is tangentially discontinuous across 
the shear-plane.  Unfortunately Oxley refused to admit this self-obvious fact (though may be for those who 
understand engineering plasticity and the mathematics involved) twenty-five years later.  Due to this 
discontinuity, the shear plane must be in the direction of maximum shear stress, τmax.  Moreover, by 
Hencky’s theorem, the pressure acting across the shear plane is uniformly distributed with magnitude psh.  
From Fig. 20, this pressure is 

)cot(max θψτ −=shp , with ψ > θ    (42) 
because the resultant traction across the shear plane must balance the force exerted by the tool (no other 
forces being applied to the chip).  Following the approach, proposed by Bishop and MaDougall, Hill 
considered simple static equilibrium within each of three angles PST, QST, and RTS (Fig. 21) assuming that  
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Fig. 21. Static equilibrium models. 

 
the shear stress in the work material cannot be greater than k and the normal stress across the shear plane p 
cannot exceed k.  Hill’s analysis yielded in the following 

θπψθ +≤<
4
1

,  if  πθ
4
10 ≤≤   (43) 

πψθ
2
1≤< ,  if  πθ

4
1>   (44) 

and 

( ) 1
4

sin2cot −




 −<−= πψθψ

k
p

  if  πψ
4
3>   (45) 

( ) 




 −−>−=

4
sin21cot πϕθψ

k
p

 if otherwise  (46) 

 The values of ϕ and ψ not excluded by Eqs. (43) - (46) are shown as the shaded area in Fig. 22a.  
This is schematic diagram for some given value of θ which was taken by Hill less than 1/4π.  Taking 
sections of Fig. 22a by lines ϕ + ψ = 1/2π + γ for various γ (positive and negative), Hill was able to plot ϕ 
against θ - γ as shown in Fig. 22b which was customarily in metal cutting papers. Analyzing a batch of 
similar diagrams plotted for different friction angles, Hill concluded that no steady configuration of the 
shear plane model is possible.   
 The next (and the last so far) significant step in the analysis of the non-uniqueness of the 
machining process was taken by Dewhurst [53] who tried to incorporate all new finding in engineering  
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Fig. 22. Values of the shear and rake angles not excluded by the equilibrium equations. 
 
plasticity and metal cutting mechanics to construct the model of chip formation.  Analyzing state of the art 
in the mechanics of machining, Dewhurst noted that the current investigators, notably Oxley and 
coworkers, have taken the view that an understanding of the process can only be attained by considering 
the distribution of temperature in the deformation zone as well as the influence of strain-rate and strain 
hardening of the deforming material.  With this premise however the problem becomes analytically 
intractable so that theoretically unjustifiable assumptions about the mode of deformation are needed in 
order to obtain solutions.  For example, in their investigation of the friction conditions along the tool face, 
Oxley and Hastings [54] were forced to make assumptions about the thickness of the deformation zone and 
the contact length between the tool and the chip.  Moreover, the know solutions ignore one of the most 
basic experimental facts that the chip emerges from the deforming zone with significant angular velocity. 
 Deriving and analyzing the mixed stress and velocity boundary conditions in the deforming zone, 
Dewhurst was able to construct his slip line field justifying these conditions (Fig. 23a) and corresponding 
velocity hodograph (Fig. 23b).  Analyzing this velocity hodograph, Dewhurst concluded that the slip-line 
field can satisfy a range of values of rake angle.  Therefore only three conditions F1 = F2 = M =0 (the force 
components that maintain chip equilibrium) remain to determine the value of four parameters ψ, θ, η, and 
pA (which is the hydrostatic pressure).  As a result, infinity of solutions is likely to exist for every value of 
the rake angle and shear stress τ.  Solving the equations for the force components and moment for any 
given value of pA, Dewhurst obtained the relationships between slip-line field angles and hydrostatic 
pressure (example is shown in Fig.  24).  Further, Dewhurst concluded that the major theorems of 
engineering plasticity cannot be applied to analyze machining due to the lack of defined boundary 
conditions.  Also, if strain hardening is included, the solution is in principle poorer since the Uniqueness 
theorem then does not apply to any steady-state process. 
 In our opinion, the positive features of Dewhurst’s paper are: 

• For the first time, a complete set of the boundary conditions was analyzed and the model (Fig. 
1.23a) was built using the results of this analysis. 

• For the first time, the discontinuity (‘jump’) of the tangential velocity was presented in the 
velocity diagram (hodograph).  As seen from Fig. 1.23b, the points along slip line ABC belonging 
to the workpiece have the same velocity, v (a,b,c), and the same points belonging to the chip have 
different velocities, namely a’, b’, and c’.  For example, aa’ on this diagram represents the 
discontinuity of the tangential velocity at point A of the model (Fig. 1.23a).  Unfortunately it was 
not noticed by the subsequent researchers. 

• The chip was considered to be “born” curved so that the angular chip velocity was included in the 
considerations. 

• The degrees of freedom of the chip formation model are considered not intuitively as it was done 
by Hill, but using a combination of the model and the velocity diagram. 
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Fig. 24. Relation between clip-line field and hydrostatic pressure for ττττ = 0.5k and ζζζζ = ¼ππππ.   

 
The drawbacks of Dewhurst’s paper are: 

• An idealized rigid-perfectly plastic work material was considered.  As a result, the stress at any 
point should not exceed the yield strength of the work material.  The known experimental 
relationships between the normal and shear stress, peculiar to real work materials, were not 
utilized.  

• All the deformation of the work material takes place along the slip line ABC  which separates the 
undeformed work material from the chip.  As a result, when an infinitesimal element of work 
material crosses the shear plane ABC, it rapidly sheared into the chip.  In this process it acquires 
that the velocity, which makes it move up the tool and the stress falls to zero.  This rapid onset of 
deformation and velocity occurs at the edge ABC of the slip-line field and thus the constructed 
slip-line field is fictitious because no plastic deformation is allowed above the shear plane ABC.  
In our opinion that was already mentioned in the analysis of Lee and Shafer model, a slip-line field 
makes sense if and only if it is used to describe strain development in a deformation zone.  The 
model considered by Dewhurst (Fig. 23a) where no plastic deformation allowed in the slip-line 
field, has no physical difference from that by Ernst and Merchant [33].    

• The model assumes that the transition surface does not join up smoothly with the chip free surface 
(point A in Fig. 23a).  It was already mentioned, that Zorev criticized Briks model for the same 
‘sin’ explaining what kind of problems it would cause.  

• Although the discontinuity of the tangential velocities along slip line ABC is recognized, the stress 
and strain singularities due to this discontinuity are not considered.   
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• Although the chip is considered as curved from slip line ABC, there is no reason (stress or strain 
distribution) provided to support this assumption.   

• The friction conditions along the tool/chip interface is considered (referring to Oxley and Hastings 
[54]) to be constant and equal τ < k.  By the time Dewhurst (as well as Oxley and Hastings) 
published his paper, it was conclusively proven (and was already included in students’ textbook, 
for example Fig. 2.18 in [17]) that the tool/chip interface consists of two approximately equal parts 
known as the regions of plastic and elastic contact (or sticking and sliding), respectively.  As such, 
within the region of plastic contact, the shear stress is constant but can exceed k significantly (for 
example, when seizure is the case).  Within the second region, the shear stress decreases becoming 
zero at the end of the tool/chip contact.    

  To conclude the consideration of Dewhurst paper, we have to point out that it was a significant 
step ahead in trying to apply engineering plasticity to solve the metal cutting problem.  Unfortunately, 
Oxley [24] criticizing this paper (and thus arguing for the uniqueness of machining), did not point out (and 
thus did not account for in his book) that the difference between the degrees of freedom of the cutting 
system and the number of available conditions that is the main cause for non-uniqueness according to Hill 
and Dewhurst.  Presenting the velocity diagram (Fig. 23b) by Dewhurst in his book, Oxley did not notice 
the discussed above velocity discontinuities on this diagram.  As a result, the velocity diagram qualitatively 
constructed by Oixley and having no such discontinues makes much less sense. 
 Subsequent researchers argued for the uniqueness of the machined process.  Instead of proving 
that Hill and Dewhurst considerations are wrong or assumptions are too rough, they conducted an 
experimental study using a ‘wide’ range of machining parameters and concluded that the discussed non-
uniqueness was not observed (how it supposes to be “observed”? auth.) in their experimental results. 
They did not bother that, in their experiments [55], the average (the base of averaging customarily is not 
shown in such publications and one may wonder what it is: a millisecond, a second, a year, or the last one 
handed years of metal cutting history) values of machining parameters have been measured while the 
instant values have been discussed by Hill and Dewhurst.   

Madhavan, and Chadrasekar tried consider machining as a wedge indentation forgetting that the 
chip does not form in such an indentation [56].  The computational, experimental, and even theoretical 
studies of uniqueness are presented.  The following objection to this study can be listed as: 

• Machining was considered as one of the deforming processes.  The authors should be aware that 
any deforming process preserves the volume of the workpiece.  In machining, the machined 
workpiece and the chip are results of the process.  Because these two are separated bodies, the 
process of such a separation is known as FRACTURE [57].  This fracture cannot be 
accomplished by shearing as stated by Madhavan, and Chadrasekar. 

• There is no particular model of chip formation considered so the necessary assumptions associated 
with such a model are not discussed.  It was indicated, however, that friction and adhesion at the 
chip/tool interface, work material hardening, and temperature and strain rate effects are not 
considered.  The work material was assumed to be rigid-perfectly plastic having the yield shear 
strength of 350 N/mm2 .   

• In the theoretical study, the velocity discontinuity [v] in Eq. (1)[56] is misinterpreted as the cutting 
velocity in Eq. (5)[56] that led to incorrect conclusions. 
To conclude the discussion on uniqueness of machining, we would like to point out the following.  

Mathematics as well as its most advanced numerical methods (like finite element modeling) are no more 
than a powerful tool that requires very skillful hands to handle.  Successful design still requires expert 
knowledge and intuitive "feel" based on experience; it requires engineers steeped in the understanding of 
existing engineering systems as well as in the new systems being designed. 

 With a computer model, however, analysis can be made quickly. The computer's apparent 
precision - six or more significant figures - can give engineers "an unwarranted confidence in the validity of 
the resulting numbers."  However the question about who makes the computer model of the calculated 
matter is of more than passing interest.  If the model is worked out on a commercially available analytical 
program, the researcher will have no easy way of discovering all the assumptions made by the programmer. 
Consequently, the researcher or designer must either accept on faith the program's results or check the 
results - experimentally, graphically, or numerically - in sufficient depth to be satisfied that the programmer 
did not make dangerous assumptions or omit critical factors and that the program reflects fully the 
subtleties of the designer's own unique problem. 
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Modeling of cutting process using sophisticated finite-element programs become quite popular and 
many researchers (and unfortunately, papers’ reviewers) try to refer to the results of such a modeling as to 
something conclusively proven.  It should be very clear that software incorporates many assumptions that 
cannot be easily detected by its users but that affect the validity of the results. There are a thousand points 
of doubt in every complex computer program. Successful computer-aided modeling requires vigilance and 
the same visual knowledge and intuitive sense of fitness that successful researchers have always depended 
on when making critical conclusions.  If we are to avoid calamitous conclusions, it is necessary for 
researchers to understand that such errors are not errors of mathematics or calculation but errors of 
engineering judgment based on the lack of understanding the physical backgrounds, particularly machining. 

Unfortunately, some researchers do not seem to be aware of the simple fact that mathematics 
cannot create physics, physical bodies or phenomena, just as it cannot create biology, life, love, money, or 
the economy of a country, though it may be very helpful in all these endeavors. Mathematical models, 
including FEM models cannot output more physics than that was put into them.  If a mathematical model 
used in computer-based simulation of machining is not based on the correct physical model then the results 
of such a simulation have no value.   
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