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Basics of Cutting Tool GeometryBasics of Cutting Tool GeometryBasics of Cutting Tool GeometryBasics of Cutting Tool Geometry    
Viktor P. Astakhov 

 
 For many years there were different systems used to define a great variety of 
angles of faces and edges of cutting tools.  Although ISO Standard ISO 3002.1977 
“Geometry of the Active Part of Cutting Tools - General Terms, Reference Systems, 
Tool and Working Angles” has partially resolved this situation by definition of a system 
of planes and a number of angles, a number of deficiencies in definition of certain 
angles have been noted.  The many angles defined by the standard are not necessarily 
independent, and many trigonometric relations describing the various angles are 
different from those usually developed for an acute angle of orientation of the cutting 
edge.  
 The following systems for identifying cutting tool geometry were introduced in [1]: 

1. Tool-in-Hand System: Definitions of the basic reference planes (the main 
reference plane; the assumed working plane; the tool cutting edge plane; the tool 
back plane; the orthogonal plane; the cutting edge normal plane) for each of the 
cutting edges.  A system of tool angles (the tool cutting edge angle; the tool 
minor (end) cutting edge angle; the tool approach angle; the rake angles; the 
clearance (flank) angles; the wedge angles; the cutting edge inclination angle), 
their definitions, meaning, and interrelationships among them. 

2. Tool-in-Machine System (Setting System) of Angles and Planes. 
3. Tool-in-Use System. 

 
 The following is to provide the definitions of some basic plane and angles in the 
Tool-in-Hand system. 
 
1.  Planes 
 The working part of the cutting tool basically consists of two surfaces intersecting 
to form the cutting edge.  The surface along which the chip flows is known as the rake 
face or more simply as the face, and that surface which is ground back to clear the new 
or machined surface is known as the flank surface or simply as the flank.  In the 
simplest yet common case the rake and flank surfaces are planes. 
 Figure 1 shows the definition of the main reference plane Pr as perpendicular to 
the assumed direction of primary motion and the tool-in-hand coordinate system.  In this 
figure, vf  is the assumed direction of the cutting feed. Because angles of the cutting tool  
are defined in a series of reference planes, the standard defines a system of these 
planes in the tool-in-hand system, as shown in figure 2. The system consists of five 
basic planes defined relative to the reference plane Pr. Perpendicular to the reference 
plane Pr and containing the assumed direction of feed motion is the assumed working 
plane Pf.  The tool cutting edge plane Ps  is perpendicular to Pr , and contains the side 
(main) cutting edge (1-2 in Fig. 1).  The tool back plane Pp is perpendicular to Pr and Pf.  
Perpendicular to the projection of the cutting edge into the reference plane is the 
orthogonal plane Po.  The cutting edge normal plane Pn is perpendicular to the cutting 
edge. 
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Figure 1. Definition of the main reference plane Pr. 

 
 
 

 
Figure 2: Standard system of reference planes in the tool-in-hand system (major cutting 

edge). 
 

Similarly, an additional system of planes can be attributed to the minor cutting 
edge and contains the following planes: P’s, P’o, P’n as shown in figure 3. 
 
2. Angles 
 The geometry of a cutting element is defined by certain basic tool angles and 
thus precise definitions of these angles are essential [1].  A system of tool angles is 
shown in figure 4.  Rake, wedge and clearance (flank) angles are specified by γ, β, and  
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Figure 3: Standard system of reference planes in the tool-in-hand system (minor cutting 

edge). 
 

α, respectively, and these are identified by the subscript of the plane of intersection. The 
definitions of basic tool angles in the tool-in-hand system are as follows: 
 

• κ r is the tool cutting edge angle; it is the acute angle that Ps makes with Pf and is 
measured in the reference plane Pr .  It can be also defined as the acute angle 
between the projection of the main cutting edge into the reference plane and the 
x-direction (Fig. 1).  κr is always positive and it is measured in a counter-
clockwise direction from the position of  Pr. 

• κ r1 is the tool minor (end) cutting edge angle; it is the acute angle that P’s makes 
with Pf and is measured in the reference plane Pr . It can be also defined as the 
acute angle between the projection of the minor (end) cutting edge into the 
reference plane and the x-direction (Fig.1).  κr1 is always positive (including zero) 
and it is measured in a clockwise direction from the position of  Pr.  

• ψr is the tool approach angle; it is acute angle that Ps makes with Pp and is 
measured in the reference plane Pr as shown in figure 4. 

• The rake angles are defined in the corresponding planes of measurement.  The 
rake angle is the angle between the reference plane (the trace of which in the 
considered plane of measurement appears as the normal to the direction of 
primary motion) and the intersection line formed by the considered plane of 
measurement and the tool rake plane. The rake angle is defined as always being 
acute and positive when looking across the rake face from the selected point and 
along the line of intersection of the face and plane of measurement. The viewed 
line of intersection lies on the opposite side of the tool reference plane from the 
direction of primary motion in the measurement plane for γf, γp, γo, or a major        
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Figure 4:      Tool angles in the tool-in-hand system. 
 

component of it appears in the normal plane for γn. The sign of the rake angles is 
well defined (Fig. 4). 

• The clearance (flank) angles are defined in a way similar to the rake angles, 
though here if the viewed line of intersection lies on the opposite side of the 
cutting edge plane Ps from the direction of feed motion, assumed or actual as the 
case may be, then the clearance angle is positive.  Angles αf, αp, αo, αn are 
clearly defined in the corresponding planes. The clearance angle is the angle 
between the tool cutting edge plane Ps and the intersection line formed by the 
tool flank plane and the considered plane of measurement as shown in figure 4.  

• The wedge angles βf, βp, βo, βn are defined in the planes of measurements.  The 
wedge angle is the angle between the two intersection lines formed as the 
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corresponding plane of measurement intersects with the rake and flank planes. 
 For all cases, the sum of the rake, wedge and clearance angles is 90o, i.e. 

 
o

fffooonnnppp 90=++=++=++=++ αβγαβγαβγαβγ      (1) 
 

• For the minor (side) cutting edge, the flank angle αo1 is specified as the angle 
between the tool minor (side) cutting edge plane P’s and the intersection line 
formed by the tool minor flank plane and the plane of measurement P’o as shown 
in figure 4.  

• The orientation and inclination of the cutting edge are specified in the tool cutting 
edge plane Ps.  In this plane, the cutting edge inclination angle λs is the angle 
between the cutting edge and the reference plane.  This angle is defines as 
always being acute and positive if the cutting edge, when viewed in a direction 
away from the selected point at the tool corner being considered, lies on the 
opposite side of the reference plane from the direction of primary motion.  This 
angle can be defined at any point of the cutting edge.  The sign of the inclination 
angle is well defined in figure 4. 

 
 Simple relationships exist among the considered angles in the tool-in-hand 
system.  These relationships have been derived assuming that the tool side rake angle 
γf, the tool back rake angle γp, and the tool cutting edge angle κr are the basic angles for 
the tool face, and the tool side clearance angle αf, the tool back clearance angle αp, and 
the tool cutting edge angle κr are the basic angles for the tool flank [2,3]: 
 

frprs γκγκλ tancostansintan −=  (2) 

osn γλγ tancostan =                           (3) 

frpro γκγκγ tansintancostan +=      (4) 

osn αλα cotcoscos =            (5) 

frpro ακακα cotsincotcoscot +=     (6) 
 
 It must be stated, however, that some of these relationships apply only when the 
cutting edge angle κr is less than 90o.  Nowadays, it is becoming common practice to 
use cutting tools having κr greater than 90o.  For these tools, the following relationships 
are valid: 

frprs γκγκλ tancostansintan −−=      (7) 

oo s γλγ tancostan =                (8) 

frpro γκγκγ tansintancostan +−=      (9) 

osn αλα cotcoscot =               (10) 

frpro ακακα cotsincotcoscot +−=      (11) 
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3. The Application Of Vector Analysis To The Study Of Cutting Tool Geometry 
  As a first step in the application of vector analysis to cutting tool geometry 

problems, consider the determination of the cutting edge inclination angle in the tool-in-
machine system.   Figures 5 shows a single-point tool having a zero inclination angle  
(λs = 0) in the tool-in-hand system (i.e., its side cutting edge1-2 is horizontal).  In tool-in-
machine system, the tool in installed so that its tip 1 is shifted relative to the reference 
plane on distance h.  The problem is to determine the resultant cutting edge inclination 
angle due to this shift. 
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Figure 5: Geometry of a single-point tool when the cutting edge, having a zero inclination angle 
in the tool-in-hand system, is shifted above the reference plane through the axis of rotation.  
Note that the tool cutting edge angle κr <π/2. 

 
  In figure 5, a point r is selected on the side cutting edge 1-2 to be a current point 
in our consideration. The right-hand (x, y, z) coordinate system with the origin in point r 
is set up as follows: 

1. The x-axis along with the feed motion. 
2. The y-axis is chosen to be perpendicular to the x-axis with sense as shown in 

Fig. 5. 
3. The z-axis is perpendicular to the x- and y-axes, with sense as shown in Fig. 5.  

Let p be a vector along the cutting edge 1-2 then in the selected coordinate 
system this vector is represented as: 

rjip κtan+=   (12) 
 
Let h be a distance between point r and the horizontal plane passing through the center 
of rotation 0; Rc be the radius of rotation of point r then the angle µ between the z-axis 
and the vector of the cutting speed at point r is calculated as 

cR
h=µsin   (13) 
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Let v be a vector along the direction of the cutting speed.  This vector can be 

determined easily because it is perpendicular to 0r, hence 
kjv +−= µtan   (14) 

 
The angle between vectors p and v is then calculated as 

p

pp spsp
⋅

⋅=−=




 +=⋅

ν

νλλπν sin
2

cos)cos(   (15) 

Expressing the scalar product and vector modules through the vectors’ coordinate (Eqs. 
12 and 15), we obtain 

( )( ) µκ
κµ

κµ
λ sinsin

tan1tan1

tantan
sin

22 r
r

r
sp ∓=

++±

−
=   (16) 

 
Using Eq. (16) one can calculate the inclination angle for any given point of the 

cutting edge 1-2.   
 Two important conclusions may be drawn from Eq. (16).  First, the inclination 
angle is negative (as expected according to Fig. 4) and it varies along the cutting edge 
due to the variation of angle µ.  As seen, the maximum λsp is in point 1 and the minimum 
is in point 2.  Second, if the tool would be installed below the discussed reference plane 
then angle µ would be negative.  As such, λsp is positive changing from its maximum in 
point 1 to its minimum at point 2. 
 It was shown in [3] that the rake and clearance angles, defined in the orthogonal 
plane in the tool-in-hand system, change in the tool-in-machine system if a tool is 
shifted with respect to the reference plane.  This is due to the fact that the plane of cut 
(which is defined as to be tangent to the surface of cut at the considered point of the 
cutting edge) ceases to be perpendicular to the reference plane.  The angle between 
this plane and the cutting edge plane is denoted as τ1 and measured in the orthogonal 
plane.  When λs = 0 and a cutting tool is installed as shown in Fig. 5, the rake and relief 
angles in the tool-in-machine system are calculated as [3] 

1ταα −= oop   (17) 

1τγγ += oop   (18) 
To determine τ1, consider normal Nr, which is perpendicular to the cutting edge in 

point r and lies in the reference plane through the cutting edge (Fig. 5).  As seen 
jiN rr +−= κtan   (19) 

 Normal N2 to the plane of cut is determined as the vector product of vectors v 
and p located in this plane 
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µκ
κ

µ tan)tan(
0tan1
1tan02 kji
kji

pvN r

r

++−=−=×= (20) 

 
Because angle τ1 is the angle between the plane of cut and the cutting edge plane, it 
can be calculated as the angle between normals to these planes as follows 

)(
tan

2

2
1

NN

NN

r

r

⋅

×
=τ   (21) 

 
The vector product of N1 and N2 is calculated as 
 

µκµ
µκ

κ tantan)tan(
tan1tan

01tan2 r

r

rr ji
kji

NN +−=
−
−=×   (22) 

 
 
and so its module is equal to 

r
rrr NN

κ
µµκκ

cos
tantantantan 222

2 =+=×   (23) 

The scalar product of Nr and N2 is calculated as 

r
rr NN

κ
κ 2

2
2

cos
11tan =+=⋅   (24) 

Substituting Eqs. (23) and (24) into (21), one can obtain 

r

r

r κµ
κ

κ
µ

τ costan
cos

1
cos

tan

tan
2

1 ==   (25) 

 Analysis of Eq. (25) shows that angle τ1 varies along the cutting edge because it 
depends on angle µ, which is a function of the radius of rotation (Eq. (13)).  As a result, 
the rake and relief angles also vary along the cutting edge (Eqs. (17) and (19)).  The 
maximum γop and the minimum αop are in point 1 while opposite is true in point 2.  
Moreover, γop > γo while αop < αo.  If the tool would be installed below the discussed 
reference plane, angle µ is negative.  In effect, γop < γo while αop > αo and the maximum 
γop and the minimum αop are in point 2 while opposite is true in point 1.   
 Consider Fig. 6, which shows a single-point tool having angle κr > π/2 while other 
parameters and designations are kept the same.  This model represents the outer  
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Figure 6: Geometry of a single-point tool when the cutting edge, having a zero inclination 
angle in the tool-in-hand system, is shifted above the reference plane through the axis of 
rotation.  The tool cutting edge angle κr > π/2. 

 
cutting edge of a gundrill having angle ϕ1 = κr – 90o.  This angle will be used in our 
considerations. 

Following the same methodology as discussed for Fig. 5, we can write: 
Normal Nr, which is perpendicular to the cutting edge in point r and lies in the reference 
plane through the cutting edge, is represented as  

jiN r −−= 1tanϕ   (26) 
Vectors along the cutting speed and the cutting edge, respectively 

kjv +−= µtan   (27) 

1tanϕjip +−=   (28) 
As before, normal N2 to the plane of cut is determined as the vector product of vectors v 
and p located in this plane 

11

1

2 tantantan
01tan
1tan0 ϕµϕ

ϕ
µ kji

kji
pvN −−−=

−
−=×=   (29) 

 
The vector product of N1 and N2 and its module are calculated as 
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µϕϕµ

ϕµϕ
ϕ

tantantantan

tantantan1
01tan

11
2

11

12

ji

kji
NN r

−=

=
−−−

−−=×
    (30) 

1

12
1

2
1

22
2

cos
tantan

tantantantan
ϕ

ϕµ
µϕϕµ =+=× NN r  (31) 

 
The scalar product of Nr and N2 is calculated as 

1
21

2
2

cos
1tan1

ϕ
ϕ =+=⋅ NN r   (32) 

 Finally 

1

1
2

1
1

1 sintan
cos

1
cos

tantan

tan ϕµ
ϕ

ϕ
ϕµ

ϕ ==   (33) 

 
Analysis of the second case (Fig. 2.14) results in the following conclusions: 
1. Equations (17) and (18) are no longer valid when κr > π/2, i.e., when κr = π/2 + 
ϕ1.  This follows from Eq. (25) where cos κr = cos (π/2 + ϕ1) = - sin ϕ1.  It can also be 
seen from Eq. (29) according to which normal N2 to the plane of cut goes ‘down’ (since 
k is negative) with respect to the horizontal normal Nr (compare with the first case 
where this normal goes up (Eq. 22) since k is positive).  As a result, Eqs. (17) and (18) 
should be re-written for the considered case as 

1ταα += oop   (34) 

1τγγ −= oop   (35) 
 
Equation (34) and (35) are of extreme importance in the considerations of the geometry 
of all kinds of drills because currently the opposite result (as per Eqs. (17) and (18) is 
used in the analysis of the rake and relief angle of twist and gun drills.  The location of 
the cutting edge above the reference plane through the drill rotation axis leads to the 
increased rake and decreased flank angles if and only if κr < π/2.  When κr > π/2 (and 
this is the common case for most drills) such a location leads to the decreased rake and 
increased relief angles.  When the drill’s cutting edge is located below the mentioned 
reference plane, the opposite is true.  For gundrills, it leads to the increased rake and 
decreased relief angles on the outer cutting edge and to the decreased rake and 
increased relief angles on the inner cutting edge.   

2. Because angle τ1 varies along the cutting, the rake and relief angles also vary 
along the cutting edge.  The maximum γop and the minimum αop are in point 2 while the 
opposite is true in point 1.   
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 To explain the obtained results graphically, figure 7 shows a graphical summary 
of the considered cases.  As seen from figure 7a, when the surface of cut  
is convex, any shift of the tool above the reference plane results in increase rake and 
decreased relief (flank) angles.  However, the opposite is true when the surface of cut is 
concave.  The latter is the case in all kinds of drilling and boring operations while the 
former is the case for common turning operations.  As seen from figure 7b, when the 
surface of cut is convex, any shift of the tool below the reference plane results in 
decreased rake and increased relief (flank) angles.  However, the opposite is true when 
the surface of cut is concave.  When the surface of cut is plane, there is no influence of 
the tool vertical location on the rake and relief angles.   
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Figure 7. Influence of the tool location on the rake and relief (flank) angles: (a) tool is 
shifted above the reference plane through the axis of rotation, (b) tool is shifted below the 
reference plane through the axis of rotation. 

 
To complete the analysis, consider a special case when κr = π/2 as shown in 

figure 8.  Following the same methodology as discussed for figures 5 and 6, we can 
write: 
Normal Nr, which is perpendicular to the cutting edge in point r and lies in the reference 
plane through the cutting edge (Fig. 8), is represented as  

iN r −=   (36) 
Vectors along the cutting speed and the cutting edge, respectively 

kjv +−= µtan   (37) 

jp =   (38) 
As before, normal N2 to the plane of cut is determined as the vector product of vectors v 
and p located in this plane 

i
kji

pvN −=−=×=
010
1tan02 µ   (39) 

The vector product of N1 and N2 and its module are calculated as 
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Figure 8: Geometry of a single-point tool when the cutting edge, having a zero inclination 

angle in the tool-in-hand system, is shifted above the reference plane through the axis of 
rotation.  The tool cutting edge angle κr = π/2. 

 
 

0
001
0012 =

−
−=×

kji
NN r   (40) 

02 =×NN r   (41) 

The scalar product of Nr and N2 is calculated as 
12 =⋅ NN r   (42) 

 Finally 

0
1
0tan 1 ==τ  thus 01 =τ   (43) 

 
 It follows from Eq. (43) that when κr = π/2, the vertical shift of a tool (with respect 
to the reference plane through the workpiece axis of rotation) does not affect the rake 
and flank angles of the cutting edge.  The reason for this is rather simple and follows 
from figure 8.  As seen, the surface of cut is a plane that coincides with the plane of cut 
and it does not change it orientation when a tool shifts along this plane.   
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